Limite D'une Suite - Maxicours

En effet, aussi petits que soient les handicaps successifs créés par la tortue, Achille mettait toujours un certain temps pour combler chacun d'entre eux et, malgré tous ses efforts, il ne put jamais rattraper la tortue! " Suite de limite infinie Chercher la limite éventuelle d'une suite, c'est étudier le comportement des termes de la suite lorsque l'on donne à n des valeurs aussi grandes que l'on veut. Définition: Soit (un)n∈N une suite de nombre réels. On dit la suite (un)n∈N a pour limite +∞ si tous ses termes sont aussi grands que l'on veut pour n suffisamment grand. Autrement dit, pour tout nombre réel M, tous les un sont plus grands que M à partir d'un certain rang. On note alors: Exemple un = n² Quand n devient très grand, n² devient aussi très grand. Pout nombre réel positif M, aussi grand que soit M, il existe toujours une valeur de n à partir de laquelle n² est plus grand que M. En effet, pour tout n ∈ N tel que n > √M, on a: Suite de limite - ∞ On définit de même: Soit (un)n∈N une suite de nombre réels.

Unicité De La Limite D'une Fonction

Merci d'avance. Posté par verdurin re: Unicité de la limite d'une fonction 11-01-14 à 23:36 Salut ThierryPoma, c'est vrai que je préfère les raisonnements directs aux raisonnements par l'absurde. Je me suis laisser emporter. Posté par verdurin re: Unicité de la limite d'une fonction 11-01-14 à 23:38 @ nils290479 0 est négatif (et positif) dans les conventions habituelles en France. Posté par ThierryPoma re: Unicité de la limite d'une fonction 11-01-14 à 23:39 Salut Verdurin. Ton explication servira toujours à nils290479. Bonne nuit.... Posté par nils290479 re: Unicité de la limite d'une fonction 11-01-14 à 23:40 Merci Verdurin Posté par verdurin re: Unicité de la limite d'une fonction 11-01-14 à 23:58 Service Posté par WilliamM007 re: Unicité de la limite d'une fonction 12-01-14 à 00:30 @ ThierryPoma et @ nils290479 Citation: On peut écrire ça car |l-l'| est une constante indépendante de x, et la seule manière qu'une constante soit toujours inférieure à 2 est qu'elle soit négative. D'une part, pour moi "négative" signifie en fait "négative ou nulle" D'autre part, il faut comprendre "soit toujours inférieure à 2, pour tout >0".

Unite De La Limite Del

On dit quelques fois que "la suite converge vers +∞ (ou -∞)" mais une suite qui tend vers +∞ ou vers -∞ n'est pas convergente. Une suite divergente peut-être une suite qui tend vers une limite mais elle peut aussi être une suite qui n'a pas de limite. Soit (un)n∈N la suite définie par un = (-1)n Alors pour tout n ∈ N, ● Si n est pair, un = (-1)n = 1 ● Si n est impair, un = (-1)n = -1 La suite (un)neN ne peut donc être convergente. En effet, si elle convergeait vers ℓ ∈ R, il existerait un rang n0∈ N tel que, pour tout n∈N, tel que n ≥ n0, on aurait: Il faudrait donc avoir Or, ceci est impossible car aucun intervalle de longueur ne peut contenir à la fois le point 1 et le point -1. La suite (un)n∈N ne peut donc être convergente. Lien entre limite de suite et limite de fonction Réciproque La réciproque est fausse. Soit f la fonction définie sur R par ƒ(x) = sin (2πx) Alors, pour tout n∈ N, on a La suite (ƒ(n))n∈IN est donc constante et converge vers 0. Pourtant la fonction f n'a pas de limite en +∞ Opérations sur les limites Soient (un)n∈IN et (Vn)n∈IN deux suites convergentes et soient ℓ et ℓ ' deux nombres réels tels que et Alors - La suite converge vers - la suite - si, la suite Théorème des gendarmes Soient, trois suites de nombres réels telles que, pour tout Si les suites (Un) et (Wn) convergent vers la même limite ℓ alors la suite (Vn) converge elle aussi vers ℓ.

Unicité De La Limite.Com

Inscription / Connexion Nouveau Sujet Posté par Reinnette 23-08-15 à 17:06 Bonjour à tous, Dans un exercice, on me demande de démontrer que la dérivée d'une fonction f de classe C1 est constante. Voici l'extrait de la correction (mes remarques figurent en italique): f'(x)=f'(6+(x-6)/(2 n)) on calcule 6+(x-6)/(2 n) lorsque n tend vers + l'infini et on obtient 6 et donc par unicité de la limite: f'(x)=f'(6) Pourquoi par unicité de la limite? Qu'est ce que l'unicité de la limite? Ce qui nous donne que f est constante sur R. Personnellement, j'ai l'impression que la seule conclusion que l'on peut tirer de ce qui précède est que f'(x)=f'(6) lorsque n tend vers l'infini. Merci d'avance! Posté par Robot re: Unicité de la limite 23-08-15 à 17:46 Citation: Pourquoi par unicité de la limite? Qu'est ce que l'unicité de la limite? Par continuité de, si tu préfères. Citation: Ton impression est fausse. On a montré que pour tout. Ca entraîne bien que est constante. D'abord, où vois-tu dans? Posté par Reinnette re: Unicité de la limite 23-08-15 à 17:55 Si on prend x=7 et n=1, on obtient f'(x)=7 Je ne comprends pas... ;( Posté par Robot re: Unicité de la limite 23-08-15 à 18:41 Ce topic Fiches de maths analyse en post-bac 21 fiches de mathématiques sur " analyse " en post-bac disponibles.

Unite De La Limite Sur

Dire ici que ce serait vrai seulement pour x assez proche de a n'aurait aucun sens, puisqu'on majore une quantité indépendante de x, donc ce dernier n'intervient pas. C'est la raison pour laquelle ici on peut passer à la limite 0 et en déduire |l-l'| 0 (et même =0 car une valeur absolue est nécessairement positive, mais là on voyait la quantité comme une constante, et on ne s'intéressait pas tellement à sa qualité de valeur absolue). On pourrait le voir légèrement différemment en se disant que |l-l'|< pour tout >0, c'est en fait dire que l' l, ou plutôt f(x) l, où f est la fonction constamment égale à l'. Une telle limite ne peut bien sûr se produire que si l=l'. En espérant que ce soit un peu plus clair pour nils290479... Ce topic Fiches de maths analyse en post-bac 21 fiches de mathématiques sur " analyse " en post-bac disponibles.

Il est clair que si ce n'est vrai que pour un seul >0, alors on ne peut pas en conclure que la constante est négative (ou nulle). Et le fait que ce soit une constante indépendante de x est important. En effet, de manière générale on est souvent amener à majorer la quantité |f(x)-l| par, c'est-à-dire écrire: |f(x)-l|<. On ne peut clairement pas ici appliquer le même raisonnement et en déduire que |f(x)-l| 0. Pourquoi? Cela se voit bien si l'on écrit les quantificateurs proprement. Par exemple dire que f(x) tend vers l en a: >0, >0/ x, |x-a|< |f(x)-l|< Il est donc faux de dire que pour tout >0, |f(x)-l|<. Il faut dire que pour tout >0, et pour tout x assez proche de a, |f(x)-l|<. Aucune raison donc ici de pouvoir passer à la limite 0 car à chaque fois que l'on prend un nouvel, le domaine des x où l'inégalité est vraie varie. Par contre, dans le cas d'une constante indépendante de x, eh bien on se débarrasse justement du problème de la dépendance en x. On prend >0, et on a directement |l-l'|<.

July 31, 2024, 9:49 pm
Moteur Mercruiser 470