Un Mooc Pour La Physique - Exercice&Nbsp;: Vidange D'une Clepsydre

Vidange de rservoirs Théorème de Torricelli On considère un récipient de rayon R(z) et de section S 1 (z) percé par un petit trou de rayon r et de section S 2 contenant un liquide non visqueux. Soit z la hauteur verticale entre le trou B et la surface du liquide A. Si r est beaucoup plus petit que R(z) la vitesse du fluide en A est négligeable devant V, vitesse du fluide en B. Le théorème de Bernouilli permet d'écrire que: PA − PB + μ. g. z = ½. μ. V 2. Comme PA = PB (pression atmosphérique), il vient: V = (2. z) ½. La vitesse d'écoulement est indépendante de la nature du liquide. Écoulement d'un liquide par un trou Si r n'est pas beaucoup plus petit que R(z), la vitesse du fluide en A n'est plus négligeable. On peut alors écrire que S1. V1 = S2. V2 (conservation du volume). Du théorème de Bernouilli, on tire que: La vitesse d'écoulement varie avec z. En écrivant la conservation du volume du fluide, on a: − S 1 = S 2. V 2 Le récipient est un volume de révolution autour d'un axe vertical dont le rayon à l'altitude z est r(z) = a. z α S 1 = π. r² et S 2 = πa².

Vidange D Un Réservoir Exercice Corrige Des Failles

(20 minutes de préparation) Un réservoir de forme sphérique, de rayon R = 40 cm, est initialement rempli à moitié d'eau de masse volumique ρ = 10 3 kg. m – 3. La pression atmosphérique P 0 règne au-dessus de la surface libre de l'eau grâce à une ouverture pratiquée au sommet S du réservoir. On ouvre à t = 0 un orifice A circulaire de faible section s = 1 cm 2 au fond du réservoir. Vidanges de réservoirs Question Établir l'équation différentielle en z s (t), si z s (t) est la hauteur d'eau dans le réservoir comptée à partir de A, à l'instant t. Solution En négligeant la vitesse de la surface libre de l'eau, le théorème de Bernoulli entre la surface et la sortie A donne: D'où: On retrouve la formule de Torricelli. L'eau étant incompressible, le débit volumique se conserve: Or: Soit, après avoir séparé les variables: Vidanges de réservoirs Question Exprimer littéralement, puis calculer, la durée T S de vidange de ce réservoir. Solution La durée de vidange T S est: Soit: L'application numérique donne 11 minutes et 10 secondes.

Vidange D Un Réservoir Exercice Corrigé La

Vidange d'une clepsydre (20 minutes de préparation) Un réservoir de forme sphérique, de rayon R = 40 cm, est initialement rempli à moitié d'eau de masse volumique ρ = 10 3 kg. m – 3. La pression atmosphérique P 0 règne au-dessus de la surface libre de l'eau grâce à une ouverture pratiquée au sommet S du réservoir. On ouvre à t = 0 un orifice A circulaire de faible section s = 1 cm 2 au fond du réservoir. Question Établir l'équation différentielle en z s (t), si z s (t) est la hauteur d'eau dans le réservoir comptée à partir de A, à l'instant t. Solution En négligeant la vitesse de la surface libre de l'eau, le théorème de Bernoulli entre la surface et la sortie A donne: \(P_0 + \mu gz = P_0 + \frac{1}{2}\mu v_A^2\) D'où: \(v_A = \sqrt {2gz_S}\) On retrouve la formule de Torricelli. L'eau étant incompressible, le débit volumique se conserve: \(sv_A = - \pi r^2 \frac{{dz_S}}{{dt}}\) Or: \(r^2 = R^2 - (R - z_S)^2 = z_S (2R - z_S)\) Soit, après avoir séparé les variables: \((2R - z_S)\sqrt {z_S} \;dz_S = - \frac{{s\sqrt {2g}}}{\pi}\;dt\) Question Exprimer littéralement, puis calculer, la durée T S de vidange de ce réservoir.

Vidange D Un Reservoir Exercice Corrigé

Le débit volumique s'écoulant à travers l'orifice est: \({{Q}_{v}}(t)=\kappa \cdot s\cdot \sqrt{2\cdot g\cdot h(t)}\) (où \(s\) est la section de l'orifice). Le volume vidangé pendant un temps \(dt\) est \({{Q}_{v}}\cdot dt=-S\cdot dh\) (où \(S\) est la section du réservoir): on égale le volume d'eau \({{Q}_{v}}\cdot dt\) qui s'écoule par l'orifice pendant le temps \(dt\) et le volume d'eau \(-S\cdot dh\) correspondant à la baisse de niveau \(dh\) dans le réservoir. Le signe moins est nécessaire car \(dh\) est négatif (puisque le niveau dans le réservoir baisse) alors que l'autre terme ( \({{Q}_{v}}\cdot dt\)) est positif. Ainsi \(\kappa \cdot s\cdot \sqrt{2\cdot g\cdot h(t)}\cdot dt=-S\cdot dh\), dont on peut séparer les variables: \(\frac{\kappa \cdot s\cdot \sqrt{2\cdot g}}{-S}\cdot dt=\frac{dh}{\sqrt{h}}={{h}^{-{}^{1}/{}_{2}}}\cdot dh\). On peut alors intégrer \(\frac{\kappa \cdot s\cdot \sqrt{2\cdot g}}{-S}\cdot \int\limits_{0}^{t}{dt}=\int\limits_{h}^{0}{{{h}^{-{}^{1}/{}_{2}}}\cdot dh}\), soit \(\frac{\kappa \cdot s\cdot \sqrt{2\cdot g}}{-S}\cdot t=-2\cdot {{h}^{{}^{1}/{}_{2}}}\).

Vidange D Un Réservoir Exercice Corrige Les

Lorsque;, on se trouve dans le cas de l'écoulement permanent (formule de Torricelli), on peut donc écrire:

Lécoulement est à deux dimensions (vitesses parallèles au plan xOy et indépendantes de z) et stationnaire. Un point M du plan xOy est repéré par ses coordonnées polaires. Lobstacle, dans son voisinage, déforme les lignes de courant; loin de lobstacle, le fluide est animé dune vitesse uniforme. Lécoulement est supposé irrotationnel. 3)1) Déduire que et que. 3)2) Ecrire les conditions aux limites satisfait par le champ de vitesses au voisinage de lobstacle (), à linfini (). 3)3) Montrer quune solution type est solution de. En déduire léquation différentielle vérifiée par. Intégrer cette équation différentielle en cherchant des solutions sous la forme. Calculer les deux constantes dintégration et exprimer les composantes du champ de vitesses. 3)4) Reprendre cet exercice en remplaçant le cylindre par une sphère de rayon R. On remarquera que le problème a une symétrie autour de laxe des x. On rappelle quen coordonnées sphériques, compte tenu de la symétrie de révolution autour de l'axe des x, 31 | Rponse 32 | Rponse 33 | Rponse 34 |

August 1, 2024, 1:28 am
Chauffeur De Cours