Les Suites Numériques Exercices Corrigés Tronc Commun Biof- Dyrassa

Préciser \(\lim S_{n}\). Suites de Type: \(U_{n+1}=f(U_{n})\) Exercice 15: \(f\) la fonction définie sur \(I=[0; \frac{1}{4}]\) par: \(f(x)=x^{2}+\frac{3}{4}x\) 1) Déterminer \(f(I)\). 2) Soit \((u_{n})\) la suite numérique définie par: \(u_{0}=\frac{1}{5}\) et \(u_{n+1}=f(u_{n})\) pour tout \(n ∈IN\) a) Montrer que: ∀n ∈IN: \(0≤ u_{n}≤ \frac{1}{4}\) b) Étudier la monotonie de la suite \((u_{n})\). c) En déduire que \((u_{n})\) est convergente. d) Calculer la limite de la suite \((u_{n})\). Exercice 16: \(g\) la fonction définie sur \(I=] 1;+∞[\) par: g(x)=\frac{x^{2}-3 x+6}{x-1} 1) Montrer que pour tout \(x ∈ I: g(x) ≥ 3\) 2) On considère la suite numérique \((u_{n})\) définie par\(u_{0}=5\) et \(u_{n+1}=g(u_{n})\) pour tout \(n ∈IN\) a) Montrer que: \((∀n ∈IN^{*}) u_{n} ≥ 3\) b) Montrer que la suite \((u_{n})\) est monotone. c) En déduire que la suite \((u_{n})\) est convergente puis calculer sa limite. Exercices sur les suites numériques 1 à lire en Document - livre numérique Education Annales du bac. Exercice 17: \(u_{0}=1\) et \(u_{n+1}=u_{n}+u_{n}^{2}\) pour tout \(n ∈IN\) 1) Montrer que la suite \((u_{n})\) est croissante.

Suite Numérique Bac Pro Exercice 1

2) Montrer par l'absurde que \((u_{n})\) n'est pas majorée. 3) Déterminer la limite de la suite \((u_{n})\) Suites Adjacentes: Exercice 18: Dans chacun des cas suivants, montrer que les suites\((u_{n}) et (v_{n})\) sont adjacentes: 1) \(u_{n}=\frac{2 n}{n+2}\) \(v_{n}=2+\frac{1}{n! }\) 2) \(u_{n}=1+\frac{1}{1! Lycée Thérèse PLANIOL de LOCHES – Général Technologique Professionnel. }+\frac{1}{2! }+…+\frac{1}{n! }\) \(v_{n}=u_{n}+\frac{1}{n, n! }\) 3) \(u_{n}=\sum_{k=1}^{n-1} \frac{1}{k^{2}(k+1)^{2}}\) \(v_{n}=u_{n}+\frac{1}{3 n^{2}}\) Exercice 19: \((u_{n})_{n≥1}\) et \((v_{n})_{n≥1}\) deux suites définies par: \(u_{n}=1+\frac{1}{2^{2}}+…+\frac{1}{n^{2}}\) \(v_{n}=u_{n}+\frac{1}{n}\) Montrer que: \((u_{n})_{n≥1}\) et \((v_{n})_{n≥1}\) sont convergentes et on la même limite. Exercice 20: On considère les suites \((u_{n})\) et \((v_{n})\) définies par: \(u_{0}=a \) \(u_{n+1}=\sqrt{u_{n} v_{n}}, n ∈IN\) \(v_{0}=2a\) \(v_{n+1}=\frac{u_{n}+v_{n}}{2}, n ∈IN\) \(a\) est un réel strictement positif. 1) Montrer que: pour tout n ∈IN: \(0

Suite Numérique Bac Pro Exercice Sur

3) Montrer que: les suites \((u_{n}) et (v_{n})\) sont adjacentes. Exercice 21: \((u_{n})_{n≥2}\) et \((v_{n})_{n≥2}\) deux suites définies par: \(u_{n}=2^{n+1} \sin \frac{\pi}{2^{n+1}}\) \(v_{n}=2^{n+1} \tan \frac{\pi}{2^{n+1}}\) Montrer que: \((u_{n})_{n ≥ 2}\) et \((v_{n})_{n 22}\) sont adjacentes.

Suites de Type: \(U_{n+1}=a U_{a}+b\): Exercice 12: \(u_{0}=1\) \(u_{n+1}=\frac{2}{3} u_{n}+\frac{2}{3}\) pour tout \(n ∈IN\) On pose: \(v_{n}=2-u_{n}\) pour tout \(n ∈IN\) 1) Montrer que \((v_{n})\) est géométrique et déterminer saraison et son premier terme. 2) a) Déterminer \(v_{n}\) et \(u_{n}\) en fonction de \(n\). b) Déterminer la limite de la suite \((u_{n})\) 3) On pose pour tout \(n ∈IN: S_{n}=\sum_{k=0}^{n} u_{k}\) Exprimer \(S_{n}\) en fonction de \(n.

August 1, 2024, 12:18 am
Jeux Aigle Tueur